Reactive Transport Modeling of CO2 Storage and Interaction with Cap Rocks
- Shabani B, Lu P, Kammer R, and Zhu C (2022) Effects of Hydrogeological Heterogeneity on CO2 Migration and Mineral Trapping: 3D Reactive Transport Modeling of Geological CO2 Storage in the Mt. Simon Sandstone, Indiana, USA. Energies, v15. DOI.
- Lu P, Zhang GR, Huang Y, Apps J, and Zhu C (2022) Dawsonite as a temporary but effective sink for geological carbon storage. International Journal of Greenhouse Gas Control. v119: 103733. DOI.
- ZhangGR, *Lu P, Huang Y, Li GH, and *Zhu C (2021) Investigation of mineral trapping processes based on coherent front propagation theory: A dawsonite-rich natural CO2 reservoir as an example. International Journal of Greenhouse Gas Control v110, 103400. DOI.
- ‡Zhang GR, ‡Lu P, ‡Zhang YL, Wei XM, and *Zhu C (2016) Impacts of mineral reaction kinetics and regional groundwater flow on long-term CO2 fate at Sleipner. Energy & Fuel 30(5): 4159-4180. DOI
- Zhu C, ‡Zhang GR, ‡Lu P, ‡Meng LF, and Ji X (2015) Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. The International Journal of Greenhouse Gas Control 43: 233-246. DOI
- Zhang GR, ‡Peng L, ‡Zhang YL, Wei XM, and *Zhu C (2015) Effects of rate law formulation on predicting CO2 sequestration in sandstone formations. International Journal of Energy Research 39(14): 1890-1908. DOI.
- Liu Faye (Yifei), Lu P, Zhu C, and Xiao Y (2011) Coupled reactive transport modeling of CO2 Sequestration in the Mt. Simon Sandstone Formation, Midwest U.S.A. The International Journal of Greenhouse Gas Control. DOI
- Strazisar BR, Zhu C, and Hedges SW (2006) Preliminary modeling of the long-term fate of CO2 following injection into deep geological formations. Environmental Geosciences 13, no.1, 1-15, 2006.
Mineralogical or above Ground Carbon Sequestration (U.S. Patent 7922792 "Method for Sequestration of CO2 and SO2 Utilizing a Plurality of Waste Streams")
- Dilmore R, Lu P Soong, Allen Y, Hedges H, Fu JK, Dobbs C, Degalbo A, Zhu, C (2008) Sequestration of CO2 in mixtures of bauxite residue and saline waste water. Energy & Fuels, v 22, No.1, p.343-353.
Laboratory Experiments on Host Rock Reactivity and Caprock Integrity
- Lu P, Fu Q, Seyfried Jr. WE, Jones K, and Zhu C (2013) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 2 Effects of CO2 and implications for carbon sequestration. Applied Geochemistry 30: 75-90. DOI
- Liu F(Yifei), Lu P, Griffth C, Hedges SW, and Zhu C (2012) CO2-caprock-brine interaction: Reactivity Experiments on Eau Claire Shale and a review of literature. TheInternational Journal of Greenhouse Gas Control 7: 153–167. DOI.
- Lu P, Fu Q, Seyfried WE Jr, Hereford AG, and Zhu C (2010) Navajo Sandstone-Brine-CO2 interaction: Implications for Geological Carbon Sequestration. Environmental Earth Sciences, 62 (1): 101-118. DOI
Single Mineral Reaction Kinetics with Applications to CCUS (last five years)
- ‡Kang JT, Bracco JN, Rimstidt JR, Zhu GH, Huang F, and *Zhu C (2022). Ba attachment and detachment fluxes to and from barite surfaces in 137Ba-enriched solutions with variable [Ba2+]/[SO42-] ratios near solubility equilibrium. Geochimica et Cosmochimica Acta. v317, 180-200. DOI.
- Zhu C, ‡ZhangYL, Rimstidt JD, Gong L, ‡Burkhart, JA, Chen KY, and Yuan HL (2021) Testing hypotheses of albite dissolution mechanisms at near-equilibrium using Si isotope tracers. Geochimica et Cosmochimica Acta. v303, 15-37. DOI.
- Zhu C,Rimstidt JD, ‡ZhangYL, ‡KangJT, Schott J, and Yuan HL (2020) Decoupling feldspar dissolution and precipitation rates at near-equilibrium with Si isotope tracers: Implications for modeling silicate weathering. Geochimica et Cosmochimica Acta. v271, 132-153. DOI.
- Gong L, Rimstidt JD†, ‡Zhang YL, Chen KY and *Zhu C (2019) Unidirectional kaolinite dissolution rates at near-equilibrium and near-neutral pH conditions. Applied Clay Science v182. DOI
- Zhang YL, Gong L, Chen KY, ‡Burkhart J, Yuan HL and *Zhu C (2020) A method for Si isotope tracer kinetics experiments: Using Q-ICP-MS to obtain 29Si/28Si ratios in aqueous solutions. Chemical Geology v531. DOI
- Rimstidt, JD, ‡Zhang Y and *Zhu C (2016) Rate equations for sodium catalyzed amorphous silica dissolution. Geochimica et Cosmochimica Acta 195: 120-125. DOI
- Zhu C, ‡Liu ZY, ‡Wang C, ‡Schaefer A, ‡Lu P, ‡Zhang GR, ‡Zhang YL, Georg RB, Rimstidt JD and Yuan HL (2016) Measuring silicate mineral dissolution rates using Si isotope doping. Chemical Geology, 445: 146-163. DOI
Geochemical Modeling Tools
- Lu P, Zhang GR, Apps J and *Zhu C (2022) Comparison of thermodynamic data files for PHREEQC. Earth-Science Reviews.DOI
- Zhang GR, Lu P, ‡Zhang YL, ‡Tu K and *Zhu C (2020) SupPhreeqc: A program to generate customized Phreeqc thermodynamic database based on Supcrtbl. Computers & Geosciences. v143. DOI.
- ‡Zhang YL, ‡Hu B, Teng YG and *Zhu C (2019) A library of BASIC scripts of reaction rates for geochemical modeling using Phreeqc. Computers & Geosciences, v133.DOI
- ‡Zimmer K, ‡Zhang YL, ‡Lu P, ‡Chen YY, ‡Zhang GR and *Zhu C (2016) SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. Computers & Geosciences 90: 97-111. DOI.
Online Geochemical Modeling Tools https://models.earth.indiana.edu
(About ~7000 users/visitors from 89 countries in the past two years)
- CO2 Solubility Calculator: Users input temperature, pressure, and NaCl molality, and the online tool generates CO2
- H2S Solubility Calculator: H2S is a common impurity in CO2 streams in CCUS. Users input temperature, pressure, NaCl molality, and H2S and COs mole fractions, the online tool generates H2S solubility.
- Online PHREEQC: We developed an online version of the US Geological Survey modeling software for speciation – solubility reaction path, and one-dimensional coupled reactive transport modeling.
- Online SUPCRTBL: An online version of SUPCRT that is dynamically linked to a MySQL database to make preparation of input files easier.